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Abstract
We present an architecture for integrating real-time, multimodal input into a computational agent’s
contextual model. Using a human-avatar interaction in a virtual world, we treat aligned gesture
and speech as an ensemble where content may be communicated by either modality. With a modi-
fied nondeterministic pushdown automaton architecture, the computer system: (1) consumes input
incrementally using continuation-passing style until it achieves sufficient understanding the user’s
aim; (2) constructs and asks questions where necessary using established contextual information;
and (3) maintains track of prior discourse items using multimodal cues. This type of architecture
supports special cases of pushdown and finite state automata as well as integrating outputs from
machine learning models. We present examples of this architecture’s use in multimodal one-shot
learning interactions of novel gestures and live action composition.

1. Introduction

Unlike interaction with other types of interactive agents (e.g., chatbots or personal digital assistants),
human-robot interaction inherently requires multi-modality. Robotic agents are embodied and situ-
ated which affords robots the ability to affect the real world, but also requires them to have accurate
and robust interpretive capabilities for multiple input modalities, which must run in real time. In
addition, a robot must be able to communicate with its human interlocutors using all communica-
tive modalities humans may use, including natural language, body language, gesture, demonstrated
action, emotional cues, etc. As robots take on more human-like appearances, this becomes even
more important, as there exists a gulf between expectations that the robot will communicate and
understand things in a human-like way and its actual multimodal capability (Luger & Sellen, 2016).

Computers as collaborators (a la social robotics) require architectures that enable communica-
tion with humans naturalistically and multimodally, as humans do with each other. These architec-
tures must be able to capture not only natural language (spoken, written, sign, etc.), but also gesture
and body language, dynamic discourse semantics (Asher, 1998), affect and emotion (Scheutz et al.,
2006), etc., all in context. Context, in the case of a human-robot interaction, comes in large part
from the relative embodiment of the human and the robot or agent, and their situatedness with re-
spect both to the scene that they both inhabit and to each other (“co-situatedness" (Pustejovsky et al.,
2017)). But situatedness in the virtual world or the agent’s internal model alone is not enough: the
agent must be able to situate and model itself in the physical world of its interlocutors and interpret
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contextualized input relative to that space (Pustejovsky & Krishnaswamy, 2019). This in turn entails
that the agent be socially situated and socially embedded, following Dautenhahn et al. (2002) and a
multimodal interface is at minimum a social interface, following Breazeal (2003).

A number of architectures exist that handle at least some of the technical requirements of these
kinds of social robots or agents, from natural language processing to motor control (Jaimes & Sebe
(2007) and Goodrich et al. (2008) provide surveys of HRI and HCI, including architectures, as of
time of publication). We present a computational framework for capturing and reasoning over con-
versational and situational context, and driving the agent’s actions or responses in the world. A
number of different particular reasoning architectures can be created using this framework, which
is built on top of the VoxML modeling language (Pustejovsky & Krishnaswamy, 2016) as its rep-
resentation of object and event semantics. It exploits continuation-passing style (van Wijngaarden,
1966; Reynolds, 1993; Van Eijck & Unger, 2010) to retrieve situational contextual information and
compose it with object and event properties to conduct reasoning at runtime, and is designed modu-
larly to facilitate integration with other robotic architectures, such as DIARC (Scheutz et al., 2007),
POMDP approaches (Zhang et al., 2017), or reinforcement learning (Peters & Schaal, 2008).

Since the architectures described here are currently deployed on systems using an agent in a
virtual world, but are being developed for use in interactions with physical robot, we will use the
term human-avatar interaction (HAI) for interaction between a human and an embodied, situated
agent, be it an animated avatar in a virtual world or a robotic agent in the physical world.

2. Interactive and Formal Structure

Assume a task-oriented HAI dialogue reproducing most conventions of human-to-human task-
oriented dialogue (e.g., cooperation, responsiveness, disambiguation, etc.). Interlocutors might
refer to objects and actions in any order, i.e., a single utterance: “put the knife in the blue cup";
or a multi-step dialogue specifying entities and actions involved. Formally, this requires that argu-
ments be applied to previously cached predicates and vice versa at runtime, and in turn requires a
representation capable of executing methods where arguments can be raised to the type required.

2.1 Interactive Structure

Implementationally, the system in which we deploy our multimodal architectures is build on the
VoxSim software (Krishnaswamy & Pustejovsky, 2016), itself build on the VoxML platform and
modeling language. VoxSim consumes input from real-time gesture and speech recognition clients,
as described in Krishnaswamy et al. (2017) and Narayana et al. (2018), and conducts real-time
inference, reasoning, and disambiguation using a visualized and situated simulated environment as
the computer’s representation of the shared world between agent and human.

Within this environment, consider two dialogues—one conducted entirely with language and
one with a combination of language and gesture (Fig. 1). Dialogue 1L is conducted using only
language input, and in this example language suffices to give the directions necessary. However,
in many cases, HAI may require the ability to indicate information using a different method. For
instance, direct grounding to a location may be needed because the location is too complicated to
describe in language, or simply for efficiency:
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HUMAN: “The plate." [A]
AGENT: [AGENT reaches for plate] “Okay, go

on."
HUMAN: “Put it in front of you." [B]
AGENT: [AGENT puts plate in front of itself]

“Okay."

HUMAN: “The plate." [A]
AGENT: [AGENT reaches for plate] “Okay, go

on."
HUMAN: [HUMAN points] “Put it there." [B]
AGENT: [AGENT puts plate at indicated location]

“Okay."

Figure 1. Dialogues—using only language (L) and language with gesture (R)
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Figure 2. L: Example multimodal interaction accompanying Dialogue 1R. Upper-right inset shows human
pointing to location; purple target in main image shows interpreted location of deixis in virtual world. R:
VoxML typing of [[POINT]] (Pustejovsky & Krishnaswamy, 2016). E2 defines the target of deixis as the
intersection of the vector extended in E1 with a location, and reifies that point as a variable w. A4, shows the
compound binding of w to the indicated region and objects within that region Ballard et al. (1997).

In both dialogues, the human specifies the object to be manipulated in [A] and then specifies
a location in [B] along with an action. In Dialogue 1R, the human’s use of a demonstrative word,
“there" is accompanied by a deictic gesture (Fig. 2), which grounds the demonstrative to a specific
location or objects at that location. “There" selects for the location indicated by deixis, not an object.

Figure 3. Deixis to region with objects.

The human can indicate object properties with ac-
companying deixis to single out objects in a region sub-
ject to particular properties. Thus given a deictic gesture
as in Fig. 3, “cup," “that cup", “the blue cup," or even
“in that blue cup" or “put the knife in the blue cup" sin-
gle out the same object in the region, specifying objects,
locations, or actions using multiple modalities.

2.2 Formal Structure

Formally, we can define the vocabulary of the interaction, consisting of sequences of “moves" by
both interlocutors (as defined in Krishnaswamy & Pustejovsky (2018); Pustejovsky (2018)), using
the format of a context-free grammar (CFG) where the nonterminals represent sets of particular
input symbols and the terminals represent the particular content or intended response communicated
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by those input symbols. We can define a portion of the interactive “grammar" as follows, where
unexpanded terminals represent parsed sentences or phrases or variations on individual gestures:

Grammar Legend
S → OA|AO O: define object ω: static iconic gesture (object)
O → δ|δD|ω|ωD|N |ND A: define action α: dynamic iconic gesture (action)
A→ α|αD|V |V D|P |PD D: disambiguate δ: deictic gesture
D → δ|δD|P |PD|N |ND|y|yD|n|nD V : verb phrase y: affirmative response

N : noun phrase n: negative response
P : prep. phrase

Table 1. Interactive grammar snippet

At each step the disambiguation symbol D represents the acquisition of information the agent
still needs to know in order to complete some action initiated or requested by the human. Further-
more, the order of instructions may vary, requiring that the agent be able to hold previously acquired
information “in reserve" pending further instruction or answers to disambiguatory questions.

Due to the large number of terminal symbols in the “grammar" in even a superficial system,
creating new states for every possible contextual configuration is computationally inefficient. For
instance, if there are three objects in the scene, an object disambiguation sequence should not have
to proceed through three distinct states, waiting for a yes or no each time, to confirm which of the
three objects should be the focus, when instead it can recurse through the same state with a different
argument until yes is received, and then proceed to the handling of the argument, or proceed to
another state when all possible arguments are exhausted.

?knife ?cup ?plate

no

yes

no

yes

no

yes

?arg

no1

no2

yes 1 |args| > 1
2 |args| = 1

Figure 4. Contrasting state machine architecture fragments for disambiguation, using individual states for
each object (L) and a single state (R) where transitions are also based on conditions on the set of available
arguments for disambiguation (1, 2) at the time the agent enters the disambiguation state.

Evaluating the transition relation against conditions on the arguments being evaluated over at
runtime necessitates storing these arguments as symbols elsewhere. In our implementation we
elected to use a pushdown automaton (PDA), as the context-free grammar of the interaction is
Turing equivalent to a nondeterministic PDA, and to disallow operations on stack symbols other
than the topmost. Therefore, we can store existing conversational context, such as the object that is
the current focus of conversation, on the stack symbol of a PDA. In the disambiguation example, a
“no" input pops the stack to the next option, while a “yes" answer may rewrite or push a new stack
symbol. The stack symbol can be constructed to store whatever information is necessary for the
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interaction. Our implementation typically stores indicated objects and regions, object that are being
grasped by the agent, and options for objects and actions needing disambiguation.

We implement some modifications to the traditional structure of a PDA, which come from the
requirements for using situatedness to establish context and composing information in real time. As
noted in Fig. 4R, the two “no" transitions shown differ not in the particular value of the argument
being evaluated in the disambiguation state, but in the conditions on the set of possible arguments
when entering that state. This is important given the continuous nature of the world. Using a PDA
instead of an FSA is of no help in reducing the number of states in the search space if multiple tran-
sitions from the same state on the same input symbol still have to be generated for every particular
value of a continuous stack symbol parameter. For example, a coordinate indicated by deixis can
move continuously through the 3D world, particularly with noisy vision and interpolated gesture
recognition, and it is much more useful and concise to create a condition in the transition relation to
check if the indicated coordinate is “not null" or falls within a certain area than to, e.g., create one
transition if the indicated coordinate is (0.0, 2.7,−0.4) and another if it is (0.1, 2.7,−0.4).

We add two operations to the traditional PDA set of PUSH, POP, and REWRITE. The agent may
need to disregard some or all preceding context, e.g., on the aborting or completion of an action, so
FLUSH clears the stack, and the stack symbol, except for information that persists physically, such
as objects held by the agent. POPUNTIL functions similarly, but takes a state as a content argument,
and pops the stack until the stack symbol equals what it was in the previous occurrence of that state
(this is equivalent to FLUSH if the specified state has never been entered previously).

3. Situatedness, Composition, and Reasoning

Now imagine that in prior to entering the disambiguation loop in Fig. 4, the human has already
specified an action to be undertaken with whatever object is to be singled out via the available dis-
ambiguation strategies. Once the object has been successfully indicated, the action, which may
have been defined many states ago, must be retrieved and applied to the object. In continuation-
passing style (CPS), this information is specified as the “what to do next" argument (Van Eijck &
Unger, 2010) as in a Montague grammar (Barker, 2004), and can be represented using Van Eijck
& Unger’s CPS function-application over the action denoted and object emerging from the disam-
biguation loop, as shown in a Haskell fragment:

cpsApply :: Comp (a -> b) r -> Comp a r -> Comp b r
cpsApply m n = \ k -> n (\ b -> m (\ a -> k (a b)))

intAct_CPS :: WorldState -> Action -> Comp (Object -> Bool) Bool
intAct_CPS bs (Action act obj) = cpsApply (intTAct_CPS bs act)

(intObj_CPS obj)

For example, we can specify a method to execute at the moment of state transition that will
retrieve the action specified, apply it to objects or locations indicated by deixis, and prompt the agent
to ask appropriate questions using possible interpretations of the action+object/location composition
and present them to its interlocutor.
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InterpDeixis DisambTarget

null, A

no, B

no, C

yes, C

A [o1, o2, (x, y, z)], λw.put(b,on(w))@o1
B [o2, (x, y, z)], λw.put(b,on(w))@o2
C [(x, y, z)], λw.put(b,on(w))@(x, y, z)

Figure 5. PDA disambiguation fragment with
continuation-passing style and function application on
stack symbol.

Fig. 5 shows the steps through a deictic
interpretation and disambiguation step with a
previously-specified “put" action on the stack
with no destination yet specified. The transition
from InterpDexis to DisambTarget executes a
function that supplies three possible destina-
tions to stack symbol A: objects o1 and o2 and
location (x, y, z). The subsequent stack sym-
bols B and C are created by POPping in the
“no" transitions, returning to the same state. At
each step, the next destination option is applied
to the variable w in the action predicate until
the human confirms that (x, y, z) is the desired
destination. By exploiting continuation-passing
style we can raise the type of the objects or lo-
cation to the type required by the action “put."

Our HAI system is also capable to one-shot learning for iconic gestures to indicate grasping
particular objects, such as learning that miming holding a cup (such as part of the American Sign
Language sign for “cup") is an instruction to grasp the cup in that pose. Having learned this instruc-
tion, the human can instruct the avatar to grasp the cup with a single gesture instead of indicating
the cup first and then the grasping action. However, this can also be used to fill in gaps in the ex-
isting context as part of action sequences other than “grasp." The VoxML encoding for put(x, y)
contains a grasp(x) precondition before the actual object movement. Thus, if the agent enters a
state where the stack symbol contains an action with an outstanding variable—λb.put(b,v)—and the
human supplies the iconic gesture for grasp(cup), the avatar can directly lift the type e → t from
grasp(cup) to λb.put(b,v) and apply the argument cup to b: λb.put(b,v)@cup⇒ put(cup,v).

4. Discussion and Conclusions

The nondeterministic PDA architecture presented facilitates multimodal reasoning and interaction
in real time. Implementationally, we exploit the continuation-passing style available in the C#
language to use it with the Unity game engine on which VoxSim is built.1 There may be cases
where simpler or more restrictive behaviors are needed, while still requiring access to the contextual
information provided by the agent’s situatedness relative to the human and the world. In these cases,
the nondeterministic PDA serve as a general case of a deterministic PDA (where probabilities on
all transition arcs equal 1), a nondeterministic finite automaton (where the stack symbol is always
NULL), or a standard deterministic FSA (where all probabilities are 1 and the stack symbol is NULL).

Continuation-passing style as a method of incrementally aggregating contextual information
through a discourse functions with all these methods. Methods of any return type can be executed
in state transitions as long as the return type can be raised to the type required by the calling function,
and this makes it effective at composing from multiple modalities in real time.

1VoxSim repository at https://github.com/VoxML/VoxSim
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