
Exploiting Embodied Simulation to Detect Novel Object Classes Through
Interaction

Nikhil Krishnaswamy (nkrishna@colostate.edu)
Department of Computer Science, 1873 Campus Delivery

Fort Collins, CO 80523 USA

Sadaf Ghaffari (sadafgh@colostate.edu)
Department of Computer Science, 1873 Campus Delivery

Fort Collins, CO 80523 USA

Abstract

In this paper we present a novel method for a naive agent to
detect novel objects it encounters in an interaction. We train a
reinforcement learning policy on a stacking task given a known
object type, and then observe the results of the agent attempt-
ing to stack various other objects based on the same trained
policy. By extracting embedding vectors from a convolutional
neural net trained over the results of the aforementioned stack-
ing “play,” we can determine the similarity of a given object to
known object types, and determine if the given object is likely
dissimilar enough to the known types to be considered a novel
class of object. We present the results of this method on two
datasets gathered using two different policies and demonstrate
what information the agent needs to extract from its environ-
ment to make these novelty judgments.

Keywords: object reasoning; object semantics; object inter-
action; reinforcement learning; situated grounding; embodied
simulation

Introduction
Humans are efficient at seeking out experiences that are
maximally informative about their environment (Markant &
Gureckis, 2014; Najemnik & Geisler, 2008; Nelson, McKen-
zie, Cottrell, & Sejnowski, 2010; Renninger, Verghese, &
Coughlan, 2007; Schulz & Bonawitz, 2007). We explore the
physical world to practice skills, test hypotheses, learn ob-
ject affordances, etc. (Caligiore et al., 2008; Gopnik & Melt-
zoff, 1997; Gopnik, 2010, 2012; Gottlieb & Oudeyer, 2018;
Neftci & Averbeck, 2019; Piaget, 1963; Piaget & Inhelder,
2008; Son & Sethi, 2006). Young children, in particular, can
rapidly expand their vocabulary of concepts with few or no
examples, and generalize from previous to new experiences
(Clark, 2006; Colung & Smith, 2003; Vlach & Sandhofer,
2012).

Meanwhile, artificial neural networks require large num-
bers of samples to train. It may take 5-8 layers of artificial
neurons to approximate a single cortical neuron (Beniaguev,
Segev, & London, 2020). Common few-, one-, or zero-shot
learning approaches in AI provide at best a rough simulacrum
of human learning and generalization (Knudsen, 1994; Niv,
2009; Zador, 2019). Recent successes in few-shot learning
in end-to-end deep neural systems still require extensive pre-
training and fine-tuning, often on special hardware (Brown
et al., 2020) or specific task formulation (Schick & Schütze,
2020). They do not easily or organically expand to accom-
modate new concepts.

In this paper, we present a method to rapidly detect the
introduction of a new class into an environment. We use a
mixture of reinforcement learning (RL) for a stacking task
in an embodied simulation environment, convolutional neu-
ral networks, and analysis of high-dimensional vector spaces
to determine when the behavior of an object in interaction
is inconsistent enough with the expected behavior of known
object classes to be considered a likely novel class of object.
Our experiments reveal that machine learning and simulation
can be leveraged for their relative strengths in this task to
quickly bootstrap new models, and that making implicit in-
formation about object habitats (Pustejovsky, 2013) and af-
fordances (Gibson, 1977) available to the model is critical to
its performance.

Related Work
This work relates to three primary areas: object recognition
and classification, embodied interaction, and reinforcement
learning for simple tasks of the kind that toddlers and small
children are able to solve and learn from. Object recogni-
tion and classification is of course a well-traveled area in AI,
but the AI approaches also have antecedents in the cogni-
tive science community. Among many others, Riesenhuber
and Poggio (2000) presented models of computational ob-
ject recognition inspired by processes in the human visual
cortex, Oliva and Torralba (2007) motivated development on
pre-neural network computer vision systems through exam-
ining human use of contextual cues in object recognition, and
DiCarlo and Cox (2007) drew on both neurophysiology and
computation to examine the brain mechanisms that allow for
rapid object recognition under multiple circumstances.

Among approaches where the interaction between agent
and environment are central, Nolfi (2005), drawing on “em-
bodied cognitive science” (Scheier & Pfeifer, 1999), pro-
posed a theory of category formation based on the results of
interacting with the environment in simple tasks. Bar-Aviv
and Rivlin (2006) used simulation to classify objects based
on their functional properties, but did not look at identifying
when a novel class has been introduced.

Learning to stack is, of course, not a novel task in the
RL community (cf. Lerer, Gross, and Fergus (2016), W. Li,
Bohg, and Fritz (2017), R. Li, Jabri, Darrell, and Agrawal
(2020), Hundt et al. (2020), just to name a few). While it
is useful task for demonstrating RL algorithms and AI’s ca-

ar
X

iv
:2

20
4.

08
10

7v
1

 [
cs

.A
I]

 1
7

A
pr

 2
02

2

pability to learn representations of certain physical intuitions,
the work we present here also demonstrates how an RL model
for this relatively simple task, coupled with embodied simu-
lation, can be used to drive computational implementations of
certain metacognitive processes.

Methodology
Our methodology to detect novel objects can be summarized
as follows:

1. Train a policy to perform a task with a known object type.

2. Attempt to use any object presented in the same task using
the aforementioned trained policy.

3. Observe differences in behaviors of the various objects and
use those differences to identify if an instance of an object
is sufficiently different from known objects to likely con-
stitute a new class.

As we are attempting to approximate certain metacogni-
tive aspects of infant and toddler learning, we use as our task
a common activity for toddlers: stacking blocks. At slightly
more than 6 months old, most infants appear able to intuit
than an object will not fall if supported from the bottom on
over 50% of its lower surface (Baillargeon, Needham, & De-
Vos, 1992; Dan, Omori, & Tomiyasu, 2000; Huettel & Need-
ham, 2000; Spelke & Kinzler, 2007). Therefore, an RL al-
gorithm should be able to solve for a policy that resembles
this intuition in a stacking task. We train our stacking policy
using the VoxSim simulator developed by Krishnaswamy and
Pustejovsky (2016), which provides an integration with Unity
ML-Agents (Juliani et al., 2018), OpenAI Gym (Brockman
et al., 2016), and the Stable-Baselines3 reinforcement learn-
ing package (Raffin et al., 2019). VoxSim is based on the
VoxML modeling language (Pustejovsky & Krishnaswamy,
2016), which models, among other things, the rotational and
reflectional symmetry of objects, which determines in part
how they behave under interaction.

Policy Training
We first train a TD3 policy (Fujimoto, Hoof, & Meger, 2018)
to stack two equally-sized cubes. One cube is selected as
the destination object and the other as the theme object (ob-
ject that is moved). The scaled action space is a 2D contin-
uous space [0,n]× [0,n], where an arbitrary value md , where
0≤md ≤ n, represents the optimal action in dimension d. The
optimal action is that which places the theme object directly
centered atop the destination object. By default md = 1

2 n
(though this can be perturbed in our VoxSim agent imple-
mentation to test generalization) and we train our policy us-
ing n = 1000. The values of the action determine where the
theme object is placed relative to the destination object, such
that values close to md will place the theme close to centered
atop the destination object and values close to 0 or n will miss
the surface of the destination object entirely. The agent takes

Figure 1: An unsuccessful stacking attempt (left and middle),
followed by a successful one (right).

an action to place the theme block and waits to see if the two-
block stack will stay up or fall down (Fig. 1).

After the action is complete, we also add a small “jitter” to
the object. Since our agent simply moves blocks in space in
the virtual environment, this simulates the small force that a
real embodied agent (i.e., a toddler, or a robot) would exert
upon the object when releasing it. This makes the simulation
more realistic. This jitter force is applied perpendicular to the
major rotational axis of the theme object if one exists. Since
cubes are symmetrical along all 3D axes, this force in training
is applied in a random direction.

The state space comprises the height of the stack in num-
ber of blocks (so always an integer 1 or 2), and the 2D center
of gravity of the stack (X and Z values only) relative to the
center of the destination object. The agent receives a reward
of -1 for missing the destination block entirely, a reward of
9 for touching the surface of the destination block but not
stacking stably, and a reward of up to 1000 for stacking the
two blocks successfully so they do not fall down after action
completion. The episode terminates on a successful stacking,
or if the agent has tried 10 times (10 timesteps) without suc-
cess. For each attempt the reward for successful stacking is
decreased by 100 (i.e., 1000 for stacking successfully the first
time, 900 the second time, etc.). Fig. 2 shows reward plots for
policies trained using this method. The two policies that we
evaluate when gathering the datasets for this paper are repre-
sented by the left two curves, each trained for 2000 timesteps.
We refer to these as the accurate policy, where the trained
policy is very close to the optimal action, and the imprecise
policy where the trained policy is slightly less well-optimized
and the theme cube tends to fall off somewhat more often in
testing.

Policy Evaluation and Data Gathering
We then evaluate the trained policies using sets of different
theme objects and gather data about each evaluation. Since
the policies were trained to only stack a cube on another cube,
this is tantamount to making the agent attempt to stack vari-
ous objects as if they are all cubes, since policies trained for
cubes are all it knows.

Besides cubes, the theme objects we evaluate with are
sphere, cylinder, and capsule (Fig. 3), which are all the same
size as cube but have different geometric properties.

The sphere will almost never be able to be stacked since
it will roll off. The cylinder can often be stacked if placed in
the right location upright, but will usually (not always) roll off

Figure 2: Episode mean reward vs. training time. In the plot
where the reward starts climbing around timestep 700, the
action space was perturbed so the optimal policy is far from
the center.

Figure 3: Sphere, cylinder, and capsule.

the bottom cube if placed horizontally. Thus, it shares some
behavior with both a cube and a sphere. The capsule will
almost always fall off (like sphere) if placed vertically but
might occasionally remained stacked if placed horizontally
(like cylinder). We also evaluate using a theme object that is
a small cube, one quarter the volume of the destination cube.
With each of these objects we should see distinct behavior in
aggregate when attempting to stack them.

The rotational axis used in computing the direction of the
post-action jitter is encoded in the VoxML semantics of the
theme object, as shown in Fig. 4, therefore if the theme object
is a cylinder, the post-action release jitter is applied perpen-
dicular to its local Y-axis.

cylinder

TYPE =

HEAD = cylindroid
COMPONENTS = nil
ROTATSYM = {Y}
REFLSYM = {XY,Y Z}

Figure 4: VoxML typing structure for a cylinder, showing
axes and planes of rotational and reflectional symmetry.

We evaluate each policy for 1000 timesteps with each ob-
ject. Fig. 5 shows the evaluation reward plots (the blue line
is the reward after each episode and the orange line is the
mean cumulative reward), and show that the cube is the easi-
est object to stack, followed by cylinder, capsule, and finally
sphere. We can also see that there is not much difference
between the stackability of a big cube and a small cube, as
expected. As during training, the agent gets 10 attempts to
stack per episode, so stackable objects like cube and cylinder
can complete more episodes in 1000 evaluation timesteps.

During evaluation, we also gather information about each
stacking attempt from the VoxSim virtual environment. At

SM.
CUBE SPH. CYL. CAP. CUBE

CUBE 1 0.396 0.958 0.686 0.808
SPHERE 0.399 1 0.366 0.832 0.376
CYLINDER 0.974 0.366 1 0.692 0.528
CAPSULE 0.688 0.832 0.692 1 0.511
SM. CUBE 0.808 0.376 0.527 0.511 1

Table 1: CCA between object pairs (averaged across
datasets). Greatest correlation coefficient in each row and
column is bolded (excluding diagonal)

each timestep we store the type of the theme object, its ro-
tation in radians at episode start, radians between the world
upright axis and the object upright (+Y) axis, the numerical
action executed, the object rotation and offset from world up-
right after the action, the vector of the VoxML-derived post-
action jitter applied, the state observation after action comple-
tion, the reward for the attempt, the cumulative total reward
over the episode, and the cumulative mean reward over the
episode. We gathered two datasets, one each using using the
accurate and imprecise policy.

Object Similarity Analysis
Canonical correlation analysis (CCA) is concerned with find-
ing basis vectors for two sets of multidimensional variables
in an unsupervised manner, such that the correlation coeffi-
cient between the projections of the variables onto the basis
vectors is maximized (Hotelling, 1992). To expose the kinds
of differences we want a model to find when detecting novel
classes, we use CCA to find correlations between the param-
eters describing each object’s behavior in the stacking task. It
is these properties of the object and action that allow us to dis-
tinguish not just that the objects behave differently, but how.
We applied CCA to the data describing each pair of objects.
Table 1 shows the correlation coefficients between each pair,
averaged across the two datasets.

CCA exposes some of the expected correlations (or lack
thereof) between object types. Cubes, which usually stack
successfully, and spheres, which almost never do, have a
low correlation coefficient, whereas cylinders, which also fre-
quently stack successfully, have a high correlation coefficient
with cubes. Spheres and capsules, which also have similar
behavior (largely unstackable), have a high correlation coef-
ficient.

Therefore we can see that CCA can expose similarities
between object classes, but also might conflate or split ob-
ject classes incorrectly: if a small cube is a member of the
same class as big cube, cylinder must be too, because cylin-
der has a greater correlation coefficient with big cube than
small cube does. We need a model that considers objects at a
finer-grained level than raw data matrices, as many individual
parameters (e.g. numerical action) are by design mostly con-
sistent across all classes. CCA correlates the linear relation-
ships between multidimensional variables, and is an imper-
fect discriminator in this task, however, it consistently shows

Figure 5: Reward plots for stacking (left to right) cube, sphere, cylinder, capsule, and small cube on a cube. Episodes are on
the X-axis and rewards are along the Y-axis.

the expected dissimilarity of cubes and spheres, which pro-
vides a starting point for the novel class detection task.

Novel Class Detection
We want to be able to give an algorithm a model of a subset of
these classes (e.g., cube and sphere) and have it identify that a
new type of object (e.g., cylinder or capsule) is different from
any of the known classes based on the way it behaves when
interacted with (i.e., stacked). We also want to be able to
identify that new samples of a known class (e.g., small cubes),
are not new classes of objects, but additional instances of a
known class. Here we do not consider size as a distinguishing
feature in the model, only object behavior when stacked.

Novel class detection follows the following procedure:

1. Identify which known class an object is most similar to.

2. Determine if the new object is different enough from the
most similar known class to be considered likely novel.

Choosing one out of a set of known classes is an obvious
task for a forced-choice classifier. We start by training a clas-
sifier on two known classes: cube and sphere, the two most
dissimilar objects according to CCA. We use a 1D convolu-
tional neural net for this task, written in PyTorch. We group
inputs by episodes and to maintain a balanced sample, use
only the first 90 testing episodes, reserving a further 10 as a
development set for testing the classifier, and the remainder
of the data for detecting novel classes. Since episodes can
be variable length (depending on how successful the policy
was at stacking the object in question), we pad out the length
of each input to 10 timesteps, copying the last sample out to
the padding length. Therefore an episode where the policy
stacked the object successfully on the first try will consist of
10 identical timestep representations, while an episode where
the agent tried and failed the stack the object 10 times will
have 10 different timestep representations.

The classifier consists of two convolutional layers (256 and
128 hidden units respectively). The filter size in the first layer
is c, a variable equal to the number of parameters saved at
each evaluation timestep during data gathering (c = 19 here)
and a stride length of 8, and the second layer uses a filter size
of 4 and a stride length of 2. This allows the convolutions to
generate feature maps in the hidden layers that are approxi-
mately equal to the size of a single timestep sample, and con-
volving over this approximates observing each timestep of the

Figure 6: 1D CNN object classifier diagram.

episode in turn. The convolutional layers are followed by two
64-unit fully-connected layers and a softmax layer. All layers
use ReLU activation. Fig. 6 shows a network diagram. We
train for 500 epochs using the Adam optimizer (Kingma &
Ba, 2014), a batch size of 100 (= 10 episodes) and a learning
rate of 0.001.

Since the differences between cubes and sphere in their
stacking behavior are so evident, this simple two-class clas-
sifier can routinely achieve 100% evaluation accuracy on the
dev-test set.

We then take batches drawn from classes unknown to the
model, e.g., cylinder and capsule, and from additional in-
stances of known classes, e.g., cubes, spheres, and small
cubes. The classifier, trained over only two classes, will clas-
sify even the non-sphere or cube samples as sphere or cube.
Most commonly, cylinder is classified as cube and capsule is
classified as sphere, because these objects’ stacking behavior
is similar. Small cube is (correctly) classified as a cube.

We then go into the final fully-connected layer of the net-
work and pull out the 64-dimensional embedding vectors for
each sample in the testing batch, and for each sample of the
most similar known class. Regardless of the class the classi-
fier predicts, the embedding vectors of the new samples can
be compared to embedding vectors of known instances of
that predicted class to determine if this new batch is similar
enough to truly be the same as the known class or not.

We compute ~µS and ~σS, the mean embedding vector of the
known class and the standard deviation of the known class
vectors, respectively, as well as ~µN , the mean embedding vec-
tor of the new batch.

Then, assuming that if all samples, new or known, were
in fact members of the same class, there would still be some
outliers, we find individual outliers in the new batch samples

and in the known class samples by dividing the cosine dis-
tance between ~µS and the sample ~v in question by the cosine
distance between ~µS and ~µS + ~σS. Let ρ~v =

cos(~µS,~v)
cos(~µS,~µS+~σS)

, and
if ρ~v > 1, the sample ~v is considered to be an outlier ~o ∈ O,
where ρ~o =

cos(~µS,~o)
cos(~µS,~µS+~σS)

. Let OS be the set of outliers among
the samples of the known class S and let ON be the set of
vectors in the new batch N, where ρ ~oN > 1. Outlying sam-
ples may still belong to the known class (e.g., sometimes
a cube simply fails to stack properly due to bad placement,
not its properties, but nonetheless appears to be very different
from other cubes in terms of its behavior), so we perform Z-
score filtering on the computed outliers, using a Z threshold
of 3, and µρ and σρ, the mean and standard deviation, respec-
tively, of the previous computations over the outlier vectors.
If (ρ~o−µρ)

σρ
≥ 3, ~o is removed from the set of outlier embed-

dings. For all outliers ~oN ∈ ON that were derived from new
batch samples and all outliers ~oS ∈ OS derived from known
class samples, we sum ρ ~oN for all ~oN ∈ ON and divide by the
sum of ρ~oS for all ~oS ∈ OS. This produces an “outlier ratio”:

OR =
∑ ~oN∈ON ρ ~oN
∑~oS∈OS

ρ~oS

Finally, we multiply the outlier ratio by cos(~µS, ~µN) (the
cosine distance between the mean of the known samples and
the mean of the new batch), divide that by cos(~µS, ~µS + ~σS)
(the cosine distance between the mean of the known samples
and the mean of the known samples plus their standard de-
viation), and multiply that by the denominator of the outlier
ratio. This approximates how many times more dissimilar a
given batch is from the mean of the known class than a ran-
dom sample that falls within the vector substance spanned by
the known class samples would be. Given that a new sam-
ple of a known class may not fall exactly within the vector
subspace spanned by the samples in the data, we want this
dissimilarity threshold to be greater than 1, acknowledging
that the subspace defining a class may expand as new sam-
ples belonging to that class are encountered. Therefore we
define a dissimilarity threshold T , and if

OR×cos(~µS, ~µN)
cos(~µS,~µS+~σS)×∑~oS∈OS

ρ~oS
> T

we say that the batch of new samples likely belongs to a class
that is not one of the known classes.

Results
Here we present results of the method detailed above. We im-
plemented tests where the classifier model was trained to clas-
sify different sets of known classes (cube and sphere, cube
and sphere and cylinder, cube and sphere and capsule, and
all four). We also conducted an experiment where we trained
the 1D CNN without the VoxML-derived jitter force infor-
mation, which implicitly encodes the axis of symmetry of
the theme object, to compare what information this adds to
the model. We conducted 10 experiments under each condi-
tion with each dataset, using a dissimilarity threshold value

of T = 25. Correct results were identifying cylinder and cap-
sule as novel classes where they were not already known, and
not identifying small cube as a novel class. Fig. 7 shows the
aggregate results with confidence intervals.

Figure 7: Novel class identification accuracy under each con-
dition. Top chart shows results without the VoxML-derived
jitter information, and bottom chart shows results with it.

We can achieve high accuracy in all cases, correctly iden-
tifying the novelty of cylinders and capsules where appropri-
ate, and identifying batches of small cubes as instances of
the known cube class, simply based on the way they behave
in the stacking task. The imprecise policy data is somewhat
more challenging, because even stable objects like cubes fall
off the bottom cube more often due to bad placement.

Discussion
First, it is clear that using the VoxML-derived information
in the object classifier provides a strong boost to the novel
class identification performance, often up to 25%. This is
largely because without this information, the model cannot
infer which axis the theme object moved along when the jitter
force was applied, and therefore cylinder embedding vectors
end up nearly identical to cube embeddings in most respects.
Therefore it seems that this use of VoxML is encoding infor-
mation useful for common-sense reasoning a la Hobbs (1984)

into the model.
Second, it is clear that when cylinder is a known class to

the model, it is much easier to identify capsule as a novel
class than it is to identify cylinder as a novel class when
capsule is given. This suggests that the order of class ac-
quisition is important. When the VoxML inputs are included
in classifier training, our method can identify capsule as a
novel class 100% of the time in our experiments, but when
capsule is known first, the ability to acquire cylinder is im-
peded to 75% accuracy or less. We hypothesize that this is
because cylinder-to-cube is a much more fine-grained distinc-
tion than capsule-to-cube or capsule-to-sphere. Because cap-
sule is more markedly different in its behavior compared to
cube or sphere, the capsule vectors take up a lot more space in
the overall embedding space, making it difficult for cylinder
embeddings to be distinguished from other classes (usually
cubes).

Finally, even without the VoxML-derived information
available to the model, the novel class detection method can
do a good job of determining that the small cube is not a novel
class, as witnessed by the right two bars in Fig. 7. How-
ever, a deeper look into the classifier outputs show that even
though the small cubes are being correctly labeled as “not
novel,” the most similar class they are subsumed into is often
not cube but cylinder. Therefore it is clear that the VoxML-
derived inputs are critical to correctly classifying the behav-
ioral distinctions between objects like cubes and cylinders in
the first place, in order to correctly assess the novelty of these
classes. Fig. 8 shows the CNN classifier outputs over the 10
episode dev-test set, aggregated over all 10 novel concept de-
tection experiments we conducted. The two confusion matri-
ces on the left show classification results without the VoxML-
derived inputs. The two on the right show results with those
inputs. The top two are from the accurate policy evaluation,
and the bottom two are from the imprecise policy evaluation.
Without the VoxML-derived inputs, we see frequent confu-
sion between sphere and capsule, and more so between cube
and cylinder, so clearly these inputs when extracted from the
environment are important for the success of this task.

Conclusion and Future Work
We have presented a method for a naive agent to detect the
introduction of novel classes of objects into its environment.
We use a combination of reinforcement learning, neural net-
works, and statistical methods to rapidly identify when an
object is likely to belong to a novel class based on how it
behaves during an interaction. We have presented results that
demonstrate how we can do this with high accuracy, and a low
false-positive and false-negative rate. We have also presented
evidence of what kind of information is important to capture
for the success of this task, and how the order of object class
identification is potentially important.

As mentioned, we intend this method to approximate cer-
tain aspects of infant and toddler learning. One critical differ-
ence between human learning and AI learning is that most

Figure 8: Aggregated CNN classifier outputs over the dev-test
set. Top: accurate policy evaluation; Bottom: imprecise pol-
icy evaluation; Left: without VoxML-derived inputs; Right:
with VoxML-derived inputs.

modern AI techniques require very large volumes of data,
long training times, or specialized (often expensive) hard-
ware. The models and processes we have developed here are
small, lightweight, and can be trained using only about 1000
individual timestep samples per known class. All models and
calculations presented here can be trained or performed on a
laptop using the CPU, though GPU training provides a speed
benefit, and a potential step toward a computational “fast-
mapping” style of concept acquisition, especially as more
classes are acquired.1

In future work, we would like to pursue a curriculum
learning approach, where the convolutional layer weights of
the classifier are further trained to optimize for classifying a
novel class once it is identified, and then testing the capacity
for the new model to generate embeddings that can be used
to detect subsequent novel classes.

Currently, the dissimilarity threshold we use is held con-
stant. We hypothesize that the best dissimilarity threshold is
likely to change as more classes are identified, as sections of
the vector space become associated with subspaces defining
certain classes. Therefore we will pursue methods for cali-
brating the best dissimilarity threshold for the data at hand.

We use a convolutional network approach, which involves
padding the data. We would also like to investigate a recur-
rent approach that could consume variable-sized inputs, and
investigate its effect on the nature of the extracted embed-
dings. Other future directions include: different statistical
and geometric techniques for assessing similarity, the incor-
poration of inputs that correlate with size, allowing us to po-
tentially identify small cubes as distinct by virtue of features
other than stacking behavior; and starting with a model that
has knowledge of only one class, rather than two.

1Full code and environment will be released upon deanonymiza-
tion.

References
Baillargeon, R., Needham, A., & DeVos, J. (1992). The de-

velopment of young infants’ intuitions about support. Early
development and parenting, 1(2), 69–78.

Bar-Aviv, E., & Rivlin, E. (2006). Functional 3d object classi-
fication using simulation of embodied agent. In Bmvc (pp.
307–316).

Beniaguev, D., Segev, I., & London, M. (2020). Single cor-
tical neurons as deep artificial neural networks. bioRxiv,
613141.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016). Openai
gym. arXiv preprint arXiv:1606.01540.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., . . . others (2020). Language models are
few-shot learners. arXiv preprint arXiv:2005.14165.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N.,
Capozza, M., & Baldassarre, G. (2008). Using motor
babbling and hebb rules for modeling the development of
reaching with obstacles and grasping. In International con-
ference on cognitive systems (Vol. 13, pp. 22–23).

Clark, A. (2006). Language, embodiment, and the cognitive
niche. Trends in cognitive sciences, 10(8), 370–374.

Colung, E., & Smith, L. B. (2003). The emergence of abstract
ideas: Evidence from networks and babies. Philosophical
Transactions of the Royal Society of London. Series B: Bi-
ological Sciences, 358(1435), 1205–1214.

Dan, N., Omori, T., & Tomiyasu, Y. (2000). Development
of infants’ intuitions about support relations: Sensitivity to
stability. Developmental Science, 3(2), 171–180.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant ob-
ject recognition. Trends in cognitive sciences, 11(8), 333–
341.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing
function approximation error in actor-critic methods. In
International conference on machine learning (pp. 1587–
1596).

Gibson, J. J. (1977). The theory of affordances. Hilldale,
USA, 1(2), 67–82.

Gopnik, A. (2010). How babies think. Scientific American,
303(1), 76–81.

Gopnik, A. (2012). Scientific thinking in young children:
Theoretical advances, empirical research, and policy im-
plications. Science, 337(6102), 1623–1627.

Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and
theories. Mit Press.

Gottlieb, J., & Oudeyer, P.-Y. (2018). Towards a neuro-
science of active sampling and curiosity. Nature Reviews
Neuroscience, 19(12), 758–770.

Hobbs, J. (1984). Sublanguage and knowledge. Jun.
Hotelling, H. (1992). Relations between two sets of variates.

In Breakthroughs in statistics (pp. 162–190). Springer.
Huettel, S. A., & Needham, A. (2000). Effects of balance re-

lations between objects on infant’s object segregation. De-
velopmental Science, 3(4), 415–427.

Hundt, A., Killeen, B., Greene, N., Wu, H., Kwon, H., Pax-
ton, C., & Hager, G. D. (2020). “good robot!”: Efficient
reinforcement learning for multi-step visual tasks with sim
to real transfer. IEEE Robotics and Automation Letters,
5(4), 6724–6731.

Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J.,
Elion, C., . . . others (2018). Unity: A general platform for
intelligent agents. arXiv preprint arXiv:1809.02627.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Knudsen, E. I. (1994). Supervised learning in the brain. Jour-
nal of Neuroscience, 14(7), 3985–3997.

Krishnaswamy, N., & Pustejovsky, J. (2016). Voxsim: A vi-
sual platform for modeling motion language. In Proceed-
ings of coling 2016, the 26th international conference on
computational linguistics: System demonstrations (pp. 54–
58).

Lerer, A., Gross, S., & Fergus, R. (2016). Learning physi-
cal intuition of block towers by example. In International
conference on machine learning (pp. 430–438).

Li, R., Jabri, A., Darrell, T., & Agrawal, P. (2020). Towards
practical multi-object manipulation using relational rein-
forcement learning. In 2020 ieee international conference
on robotics and automation (icra) (pp. 4051–4058).

Li, W., Bohg, J., & Fritz, M. (2017). Acquiring target stack-
ing skills by goal-parameterized deep reinforcement learn-
ing. arXiv preprint arXiv:1711.00267.

Markant, D. B., & Gureckis, T. M. (2014). Is it better to se-
lect or to receive? learning via active and passive hypothe-
sis testing. Journal of Experimental Psychology: General,
143(1), 94.

Najemnik, J., & Geisler, W. S. (2008). Eye movement statis-
tics in humans are consistent with an optimal search strat-
egy. Journal of Vision, 8(3), 4–4.

Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement
learning in artificial and biological systems. Nature Ma-
chine Intelligence, 1(3), 133–143.

Nelson, J. D., McKenzie, C. R., Cottrell, G. W., & Sejnowski,
T. J. (2010). Experience matters: Information acquisition
optimizes probability gain. Psychological science, 21(7),
960–969.

Niv, Y. (2009). Reinforcement learning in the brain. Journal
of Mathematical Psychology, 53(3), 139–154.

Nolfi, S. (2005). Category formation in self-organizing em-
bodied agents. In Handbook of categorization in cognitive
science (pp. 869–889). Elsevier.

Oliva, A., & Torralba, A. (2007). The role of context in
object recognition. Trends in cognitive sciences, 11(12),
520–527.

Piaget, J. (1963). The attainment of invariants and reversible
operations in the development of thinking. Social research,
283–299.

Piaget, J., & Inhelder, B. (2008). The psychology of the child.
Basic books.

Pustejovsky, J. (2013). Dynamic event structure and habitat

theory. In Proceedings of the 6th international conference
on generative approaches to the lexicon (gl2013) (pp. 1–
10).

Pustejovsky, J., & Krishnaswamy, N. (2016). Voxml: A vi-
sualization modeling language. In Proceedings of the tenth
international conference on language resources and evalu-
ation (lrec’16) (pp. 4606–4613).

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., & Dormann, N. (2019). Stable baselines3. GitHub
repository.

Renninger, L. W., Verghese, P., & Coughlan, J. (2007).
Where to look next? eye movements reduce local uncer-
tainty. Journal of vision, 7(3), 6–6.

Riesenhuber, M., & Poggio, T. (2000). Models of object
recognition. Nature neuroscience, 3(11), 1199–1204.

Scheier, C., & Pfeifer, R. (1999). The embodied cognitive
science approach. In Dynamics, synergetics, autonomous
agents: Nonlinear systems approaches to cognitive psy-
chology and cognitive science (pp. 159–179). World Sci-
entific.

Schick, T., & Schütze, H. (2020). It’s not just size that
matters: Small language models are also few-shot learners.
arXiv preprint arXiv:2009.07118.

Schulz, L. E., & Bonawitz, E. B. (2007). Serious fun:
preschoolers engage in more exploratory play when evi-
dence is confounded. Developmental psychology, 43(4),
1045.

Son, L. K., & Sethi, R. (2006). Metacognitive control and
optimal learning. Cognitive Science, 30(4), 759–774.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge.
Developmental science, 10(1), 89–96.

Vlach, H., & Sandhofer, C. M. (2012). Fast mapping across
time: Memory processes support children’s retention of
learned words. Frontiers in psychology, 3, 46.

Zador, A. M. (2019). A critique of pure learning and what
artificial neural networks can learn from animal brains. Na-
ture communications, 10(1), 1–7.

