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Abstract
In this paper we present a framework for evaluating interactions between a human user and an embodied virtual agent that communicates
using natural language, gesture, and by executing actions in a shared context created through a visual simulation interface. These inter-
actions take place in real time and demonstrate collaboration between a human and a computer on object interaction and manipulation.
Our framework leverages the semantics of language and gesture to assess the level of mutual understanding during the interaction and
the ease with which the two agents communicate. We present initial results from trials involving construction tasks in a blocks world
scenario and discuss extensions of the evaluation framework to more naturalistic and robust interactions.
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1. Introduction
As the field of computational linguistics evolves and more
sophisticated natural language systems become integrated
with everyday use, naive users will come to expect their in-
teractions to approximate what they are familiar with when
communicating with another human, multimodally. With
increased interest in multimodal interaction comes a need to
evaluate the performance of a multimodal system on all lev-
els with which it engages the user. Such evaluation should
be modality-agnostic and assess the success of communica-
tion between human and computer, based on the semantics
of objects, events, and actions situated within the shared
context created by the human-computer interaction.
We use the modeling language VoxML (Pustejovsky and
Krishnaswamy, 2016) as the platform for modeling the
aforementioned objects, events, and actions, and use the
VoxML-based simulation implementation VoxSim to create
the environment in which a multimodal interaction involv-
ing natural language and gesture takes place. This allows
us to exercise VoxML object and event semantics to assess
conditions on the success or failure of the interaction.

2. Multimodal Interaction
A wealth of prior work exists on the role of gestural in-
formation in human-computer interaction. “Put-that-there”
(Bolt, 1980) included deixis for disambiguation, and in-
spired a community surrounding multimodal integration
(Dumas et al., 2009; Kennington et al., 2013; Turk, 2014).
As speech and gesture are processed partially indepen-
dently (Quek et al., 2002), using both modalities comple-
mentarily increases human working memory and decreases
cognitive load (Dumas et al., 2009). Visual information has
been shown to be particularly useful in establishing mutual
understanding that enables further communication (Clark
and Wilkes-Gibbs, 1986; Clark and Brennan, 1991; Dil-
lenbourg and Traum, 2006; Eisenstein et al., 2008a; Eisen-
stein et al., 2008b). We will hereafter refer to this type of
shared understanding as “common ground,” which can be
expressed in multiple modalities.
Coordination between humans using non-verbal communi-
cation (cf. Cassell (2000), Cassell et al. (2000)) can be
adapted to the HCI domain, particularly in the context of

shared visual workspaces (Fussell et al., 2000; Kraut et al.,
2003; Fussell et al., 2004; Gergle et al., 2004). Allowing
for shared gaze has been shown to increase performance in
spatial tasks in shared collaborations (Brennan et al., 2008),
and the co-involvement of gaze and speech have also been
studied in interaction with robots and avatars (Mehlmann et
al., 2014; Skantze et al., 2014; Andrist et al., 2017).
In the context of shared physical tasks in a common
workspace, shared perception creates the context for the
conversation between interlocutors (Lascarides and Stone,
2006; Lascarides and Stone, 2009b; Clair et al., 2010;
Matuszek et al., 2014), and it is this shared space that
gives many gestures, such as pointing, their meaning (Kr-
ishnaswamy and Pustejovsky, 2016a). Dynamic computa-
tion of discourse (Asher and Lascarides, 2003) becomes
more complex with multiple modalities but embodied ac-
tions (such as coverbal gestures) fortunately do not seem to
violate coherence relations (Lascarides and Stone, 2009a).
Prior work on multimodal evaluation also includes evalu-
ation of gestural usage, although in this case gesture of-
ten refers to interfaces with multimodal displays, such as
those on mobile devices (Oviatt, 2003; Lemmelä et al.,
2008; Johnston, 2009). Evaluation of embodied virtual
agents is often focused on the agent’s “personality” or non-
verbal actions, to help overcome the “uncanny valley” ef-
fect (Krämer et al., 2007). However, recent developments
in multimodal technology and robotics provide resources
on formally evaluating the success of multimodal ground-
ing operations (e.g., Declerck et al. (2010), Hough and
Schlangen (2016), Zarrieß and Schlangen (2017)), or of in-
teractive systems (e.g., Fotinea et al. (2016)).
Many of the newest methods rely on datasets gathered us-
ing high-end technology and complex experimental setups,
including motion capture, multiple depth cameras, range-
finding sensors, or geometrically-calibrated accelerometry
(systems rarely rely on all of these as that would be pro-
hibitive). Our evaluation scheme is intended to be situation-
agnostic and relies solely on logging the time and nature
of interactions between interlocutors, conditioning on se-
mantic elements during post-processing. In addition, us-
ing a suite of gesture-recognition software running on Titan
X/Xp GPUs, the experimental setup we use relies only on



a single depth camera, a tablet computer and any machine
capable of running the Unity-based VoxSim virtual world.
With access to the GPUs over the internet, all required com-
ponents can be minimally carried in a backpack and de-
ployed anywhere with a fast internet connection. Coupled
with a streamlined evaluation scheme, this allows data to be
collected in a variety of different situations and conditions.
We are concerned with evaluating a system for its effective-
ness in creating mutual understanding between the human
and virtual agents. An effective multimodal system should
therefore support multimodal commands and shared per-
ception, and approximate peer-to-peer conversations. We
propose a semantically-informed evaluation scheme and a
sample scenario for evaluation, with the expectation that
a lightweight scheme for evaluating lightweight systems
should scale to domain-agnostic interactions.

2.1. Gestures
Visual gesture recognition has long been a challenge for
real-time systems (Jaimes and Sebe, 2007; Rieser and Poe-
sio, 2009; Gebre et al., 2012; Madeo et al., 2016). In
our demonstration system, we use Microsoft Kinect depth
sensing (Zhang, 2012) and ResNet-style deep convolutional
neural networks (DCNNs) (He et al., 2016) implemented in
TensorFlow (Abadi et al., 2016). The system is capable of
recognizing 35 independent gestures, chosen for their fre-
quent occurrence in a prior elicitation study on human sub-
jects (Wang et al., 2017a; Wang et al., 2017b). Seven of
these are currently used in the sample blocks world task:

1. Engage. Begins the task when the human approaches
the avatar, and ends it when they step back.

2. Positive acknowledge. A head nod or a “thumbs up.”
Used to signal agreement with avatar’s choice or an-
swer a question affirmatively.

3. Negative acknowledge. A head shake, “thumbs
down,” or palm-forward “stop” sign. Signals disagree-
ment with a choice or negative response to a question.

4. Point. Deixis includes the direction of the hand and/or
arm motion: one or two of front, back, left, right, up,
or down. Indicates a region or object(s) in that region.

5. Grab. A “claw,” mimicking grabbing an object. Tells
the avatar to grasp an indicated object.

6. Carry. Moving the arm in a direction while the hand is
in the grab position. “Carry up” can be thought of as
pick up, while “carry down” is equivalent to put down.

7. Push. A flat hand moving in the direction of the open
palm. Like “carry,” but without the up and down direc-
tions. A beckoning motion signals the avatar to push
an object toward the human.

Each gesture is assigned a compositional, underspecified
semantics. We treat gestures as a special case of the VoxML
entity type PROGRAM. Figure 1 shows an example.
Each gesture is linked to a VoxML verbal PROGRAM
(e.g., the gesture in Figure 1 would also link to the verb
[[PUSH]]). Each gesture and associated programs are
distinguishable based on minimal pairs of features (e.g.,
[[PUSH]] in this vocabulary requires that fingers be pointed
forward whereas [[CARRY]] keeps the fingers curved). This
allows an evaluation scheme to correlate specific successes
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Figure 1: Sample gesture voxeme: [[PUSH]]

or failures within an interaction with the features surround-
ing a gesture that occurred at the same time. An example
enabled by evaluation might be discovering that straight-
fingered gestures are more easily interpretable than curved-
fingered gestures, or that gestures without direction are less
ambiguous than gestures with it.

2.2. VoxSim
The virtual avatar and blocks world are implemented with
VoxSim, a semantically-informed reasoning system (Krish-
naswamy and Pustejovsky, 2016b) that allows the avatar
to react to gestural events with both actions and words.
VoxSim is built on the platform created by VoxML “vox-
emes,” or semantic visual objects, and therefore allows the
direct interpretation of gestures mapped through dynamic
semantics. A sample voxeme for a gesture is given above
in Section 2.1. The system also accepts speech input for
simple directions, answers to yes/no questions, and object
disambiguation by attributive adjective. Further informa-
tion about voxeme properties is laid out in Pustejovsky and
Krishnaswamy (2016).

2.3. Scenario
The sample interaction is adopted from functionality pre-
sented in Krishnaswamy et al. (2017). In this scenario, a
human and an avatar in the VoxSim environment must col-
laborate to complete a simple construction task using vir-
tual blocks that are manipulated by the avatar. The human
has a plan or goal configuration that they must instruct the
avatar to reach using a combination of gestures and nat-
ural language instructions. The avatar in turn communi-
cates through gestures and natural language output to re-
quest clarification of ambiguous instructions or present its
interpretation of the human’s commands. The human may
indicate (point to) blocks and instruct the avatar to slide and
move them relative to other blocks or relative to regions
of the virtual table. The human must also respond to the
avatar’s questions, when the avatar perceives an ambiguity
in the human’s instructions.

3. Hallmarks of Communication
As our goal in developing multimodal interactions is to
achieve naturalistic communication, we must first examine
what we mean by and desire out of an interaction such as
that illustrated in Section 2.3.
We take the view that a “meaningful” interaction with a
computer system should model certain aspects of a similar
interaction between two humans. Namely, it is one where
each interlocutor has something “interesting” to say, and
one that enables them to work together to achieve common



Figure 2: Example interaction setup, showing human su-
perimposed in upper left on avatar and VoxSim

goals and build off each other’s contributions, thereby con-
veying the impression to the user that the computer system
is experiencing the same events. We therefore build the
evaluation scheme off of the following qualitative metrics:

1. Interaction has mechanisms to move the conversation
forward (Asher and Gillies, 2003; Johnston, 2009)

2. System makes appropriate use of multiple modalities
(Arbib and Rizzolatti, 1996; Arbib, 2008)

3. Each interlocutor can steer the course of the interac-
tion (Hobbs and Evans, 1980)

4. Both parties can clearly reference items in the in-
teraction based on their respective frames of refer-
ence (Ligozat, 1993; Zimmermann and Freksa, 1996;
Wooldridge and Lomuscio, 1999)

5. Both parties can demonstrate knowledge of the chang-
ing situation (Ziemke and Sharkey, 2001)

Many of these metrics are subjective, so we approach eval-
uation from a semantics-centered perspective, and use dis-
tinct semantic properties of specific elements in the inter-
action to determine what about the interaction enabled or
hindered “shared understanding.”

4. Evaluation
A robust multimodal evaluation scheme should be able to
be applied to a human-computer interaction on a novel sys-
tem and return a result representative of the system’s cov-
erage of the total possible interactions within the system’s
domain (e.g., construction tasks in a blocks world).
To this end, a user must be truly naive, having very little to
no knowledge of exactly what the system understands. This
way, during evaluation, the user has their own definition of
objects, actions, and events, and the system has its own.
By interacting with the system, the human should be able
to learn its ways of acting within the task domain, what it
knows, and what it does not.

4.1. Logging
The interaction consists of “moves” taken by each partici-
pant, which are logged live during the interaction. For in-
stance, in our sample scenario, we log:

• Gesture received by computer (i.e., made by human)
• Word received by computer (i.e., spoken by human)
• Gesture made by computer
• Action taken by computer

• Utterance made by computer

Each of these have VoxML semantics assigned to their con-
tent.
An interlocutor’s understanding throughout the task can be
inferred from the logged data by the time and number of
moves taken to successfully communicate an instruction
(e.g., successfully indicating a distinct object, successfully
indicating an action to be taken, or any combination of the
previous) or understanding of an instruction (e.g, acknowl-
edging receipt of an instruction, asking a clarifying ques-
tion, or executing an interpreted action). Longer time be-
tween steps indicates more time needed for the human to
think (either for interpretation or planning), or for the avatar
to generate an interpretation of the human’s input, and more
moves in the course of completing a single instruction indi-
cates difficulty in communicating intended meaning.
Having identified some proxy measures for the respective
understanding of the human and the computer in the inter-
action, the task then becomes quantifying how much the
two accord.

4.2. Data collection
We ran preliminary trials on the gesture interaction system
heretofore described, with 20 individual human subjects, all
computer science graduate students without prior knowl-
edge of the avatar’s conceptual vocabulary. All subjects
were presented with a scene with six uniquely-colored,
identically-sized blocks and told to collaborate with the
avatar to build a six-block, three-stepped staircase. They
were told the computer was capable of understanding ges-
tures and speech but were not given specific words or ges-
tures to use. We then logged each interaction from start to
finish, defined as the point at which the human and com-
puter had created a three-stepped staircase to the satisfac-
tion of the human user.

4.3. Post-processing
Consider the following output snippet from a sample trial.
Beginning with the block setup in Figure 2, the human at-
tempts to instruct the computer to select the purple block
and slide it next to the yellow block. Moves are numbered,
G indicates gestures, S indicates spoken words, A indicates
actions taken, and P indicates a continuously-updated mov-
ing coordinate interpreted from the human user’s pointing
and situated in the virtual world, as indicated by the purple
circle in Figure 2. Each update in continuous pointing is in-
terpreted as a separate move and multiple updates are elided
in the example below for space reasons. Prefixed H indi-
cates a human move while prefixed A indicates an avatar
move. The description and interpretation of each gesture is
laid out in Krishnaswamy et al. (2017) and above in Section
2.1. Time format is given as seconds after trial start.

1 HG engage start 1.145281
2 AS "Hello." 1.145281
3 HP r,-0.25,-0.87 4.889832
...
73 HP r,-0.08,11.69 8.552608
74 HG right point high,-0.02,5.45

8.588802
75 AS "Are you pointing here?" 8.588802



76 AG look at(<0.03367592; 0.743948;
1.559844>) 8.588802

77 AG point(rHand,<0.03367592; 0.743948;
1.559844>) 8.588802

78 HP r,-0.02,5.45 8.660162
...
126 HP r,-0.14,-0.62 11.97283
127 HS NO 12.03008
128 AS "Sorry, I don’t know what you

mean." 12.03008
129 HP r,-0.10,-0.41 12.07262
...
188 HP r,0.96,-17.45 16.93849
189 HS PURPLE 16.97243
190 AS "OK, go on." 16.97243
191 AG reach(block7) 16.97243
192 HP r,1.06,-19.16 17.06419
193 HP r,-0.25,-0.39 17.32132
194 HP l,-0.20,1.66 18.01301
195 HP l,-0.20,1.66 18.13922
196 HP l,-0.20,1.66 18.20552
197 HG push left high 19.28887
198 HG push left stop 20.07251
199 AS "Do you want me to push this

this way?" 20.07251
200 AG LARM PUSH RIGHT 20.07251
201 HG posack high 22.76486
202 AS "Yes?" 22.76486
203 AG RARM THUMBS UP 22.76486
204 AG HEAD NOD 22.76486
205 HS YES 25.16582
206 AS "Should I push the purple block

right of the yellow block?" 25.16582
207 HS YES 26.53876
208 AS "OK." 26.53876
209 AA slide(block7,left(block1))

26.53876
Table 2: Sample trial log

As a proxy for the human’s understanding of an avatar
move, we simply take the time elapsed between the first in a
block of avatar moves uninterrupted by a human move, and
the human response that follows. The avatar’s move can be
gesture, action, utterance, or ensemble of multiple types,
and multiple moves in a block often happen simultaneously
(e.g., moves 199 and 200 here). Here, we can see that be-
tween moves 190 and 192, 0.092 seconds elapsed, whereas
between 202 and 205, 2.401 seconds elapsed. These dif-
ferences should reflect the clarity or expressiveness of the
avatar’s move. We call this the human’s time to begin re-
sponse. The avatar’s utterance at 190 simply prompts the
human to move to their next planned step, so the human can
proceed without having to spend time interpreting it. The
utterance at 202 is a question asking the human to confirm
a move, which requires the human to process the preceding
discourse and infer some of the computer’s intent in order
to respond properly, possibly accounting for the longer re-
sponse time.
Often, the human may make (or the gesture recognition
may see) gestures that, in the current context, the avatar
has no interpretation for, and thus the human makes multi-
ple moves before the avatar responds. These circumstances
are also captured by measuring the time between the first in

an uninterrupted block of moves by the human, and the first
response by the avatar thereafter. Between steps 3 and 75,
the human points around for 3.699 seconds before landing
on a particular spot that the avatar asks to confirm. Later,
3.008 seconds pass between the human’s moves beginning
at 192 (responding to the avatar’s utterance at 190) and the
avatar’s response to the subsequent content at 199, a length
which may indicate difficulty moving the conversation for-
ward. The system may be misinterpreting the gestures re-
ceived or the human may be making gestures the system
does not recognize. By contrast, when the human succeeds
in producing contentful gestures or speech interpretable in
context, the avatar is able to respond immediately as the
input is processed (cf., moves 1-2, 201-202, 205-206) and
move the conversation forward. We call this the avatar’s
time to recognize content. The human may have trouble
communicating something contentful at the beginning, but
by the time context is established through deixis and object
disambiguation, the avatar is able to advance the interaction
by providing a possible interpretation of the human’s push
instruction. These distinctions, if consistent across multi-
ple trials, show areas where the communication between
the interlocutors flows quickly or more slowly.
Response times may be charted against the semantic fea-
tures of the moves that prompted the relevant response.
As VoxML structures are componential, the distribution
of response times can be plotted as a probability den-
sity over the magnitude function of preceding moves that
contain a given semantic feature. For instance, the re-
sponse time to a push instruction, where the fingers must
be pointed forward (as in Figure 1), can be compared to re-
sponse times to a carry instruction where the fingers must
be curved. Response times can be divided with quantiles
with a q selected for the desired granularity, and compa-
rable moves should be those that occur in similar seman-
tic contexts, that is, [mj−n..mj+n] where mj is the move
in question, examined in a window of size 2n + 1. Thus
P(ti|mj−n..mj ..mj+n) represents the probability that a re-
sponse time t falls in an interval i given a move and sur-
rounding context. Individual moves can be replaced by a
VoxML semantic feature of the move. Higher P for lower i
indicates a higher likelihood of understanding being shared
through the move or semantic feature at mj .

5. Preliminary Results
Here we present a selection of the some of the most interest-
ing and illustrative results drawn from the pilot user studies.
In each chart, the X-axis shows the quantile in which reac-
tion times fall relative to all reaction times per agent for any
move, and the Y-axis shows the probability that the reaction
time to the move in question falls within that quantile (on a
0%-100% scale). q = 5 in these plots.
Figure 3 shows the distribution of times taken for the avatar
to recognize the verbal and gestural realizations of posi-
tive acknowledgment and negative acknowledgement, re-
spectively. The distributions within modalities track each
other roughly, but the avatar tends to take more time to
recognize spoken “yes” than “no,” which may be because
the human takes more time to communicate a spoken posi-
tive acknowledgment than a negative one. Meanwhile, the



Figure 3: P(ti|M ), for avatar time to recognize posi-
tive/negative acknowledgment gesture (left top/bottom) vs.
word “yes”/“no” (right top/bottom)

avatar appears to have a slightly quicker reaction time, in
most cases, to positive acknowledgment through gesture
than negative acknowledgment.

Figure 4: P(ti|M ) for human time to begin response to
[[PUSH]] gesture (left) vs. [[CARRY]] gesture (right)
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A3 = z:finger+
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 E1 = [while([open(y)∧
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Figure 5: Abbreviated gesture voxeme type structures:
[[PUSH]] vs. [[CARRY]]

Figure 4 shows the distribution of times taken for the human
to respond to the avatar making a [[PUSH]] or [[CARRY]]
gesture. The distributions are roughly equivalent, favor-
ing the mid-range, but [[PUSH]] is almost twice as likely
as [[CARRY]] to have a “very quick” (first interval) re-
sponse time and middle-quintile response times are accord-
ingly lower. The minimal distinction between [[PUSH]] and
[[CARRY]] is the orientation and curvature of the hand and
fingers, as shown in Figure 5, and so we can surmise that
gestures with curved fingers might be harder for the human
to interpret when compared to gestures with straight fingers
(this evidences a conjecture made in Section 2.1.).

Figure 6: P(ti|M ) for avatar time to recognize [[POINT]]
gesture with the left hand (left) vs. right hand (right)

Figure 6 shows the distribution of times taken for the avatar
to recognize a pointing gesture with the left and right hand,
respectively. The distributions roughly track each other, but
the avatar is notably quicker to recognize right-hand point-
ing than left-hand pointing. Semantically, these gestures
are the same, with only the orientation of the extended
finger relative to the hand flipped. A possible explana-
tion is that the gesture recognition displays greater variance
in detecting the coordinates denoted by left-hand pointing,
which should be accounted for in the recognition model.

Figure 7: P(ti|M ) for human time to begin response to
avatar asking a question

Figure 7 shows the distribution of times taken for the human
to respond to the avatar’s question. In most cases, the hu-
man answers quickly, or takes a long time to answer. This
may be caused by the human not hearing or realizing that
a question has been asked, and since the system does not
repeat itself, some time can pass before the human realizes
the move to make to move the conversation forward.
As developers, inferences like the above provide useful in-
formation for improving our example system.

6. Evaluation Variants
The evaluation scheme presented is deliberately high-level,
in order to infer largely qualitative information from quan-
titative metrics. It represents a kind of minimal “base case”
of conditions and parameters for evaluation of a multimodal
human-computer system, many of which are easily varied
to test different aspects of the interaction. As such, it is
purposefully designed to be extensible to allow for differ-
ent system types, interactive modalities, and scenarios.
Inference based on probabilistic distributions of course
risks bias in the inferencing or due to missing information.
Longer response times may occasionally be due to the trial
subject getting distracted or some lag in the system rather



than any loss of understanding. Therefore we would like to
present a set of variant and optional metrics to account for
some of these potential omissions and test different aspects
of the system under evaluation.

6.1. Additional and Optional Metrics
One simple additional parameter to log is flagging those
utterances that clearly indicate confusion, such as the avatar
saying “I don’t understand,” or the human saying ”never
mind,” or abruptly disengaging mid-interaction. This can
easily be evaluated to determine the probability of obvious
confusion given a semantic context.
Similarly, affirmative and negative responses can be incor-
porated as a heuristic in determining when a block of moves
should be initiated and terminated in evaluation. In Table
2, for instance, at move 75 the avatar asks the user if they
are pointing at a particular location, and that question is an-
swered with “No.” That entire span in the interaction indi-
cates communication of the pointing concept from the hu-
man to the avatar, but misinterpretation of the intent. If we
were to treat that entire span as a block when calculating
reaction time, rather than the raw human vs. avatar moves,
we could glean additional information about the accuracy
of pointing in the scenario.

6.2. Variant Conditions
In the outline above, we begin trials having given the user
little to no information about the computer’s vocabulary or
capability. This allows evaluation to test the coverage of
the system, but not necessarily how well the human adapts
their behavior to the system. Therefore trials might also be
conducted after the user has been presented with written de-
scriptions of possible gestures (as in Section 2.1.), or after
watching a video recorded from a successfully completed
interaction, which would allow them to see gestures and
known vocabulary in use. Both these conditions could al-
low evaluation of how well the interaction functions within
the known constraints on the vocabulary, and can test if
training the user reduces error.

6.3. User Feedback and “Ground Truth”
User reaction to the trial may be assessed by surveying
them immediately following the interaction. For instance,
they might rate certain moves by the avatar from clear to
confusing, giving a qualitative rating of specific circum-
stances. Additionally, users might provide live feedback
during the trial by a “talkback mode,” wherein they could
provide inputs such as the following:

• What user expects avatar to do following their move
• Whether an avatar question is reasonable or not
• Whether an avatar response is situationally inappro-

priate, incomplete, redundant, etc.

How can the overall success or failure of an interaction be
assessed from the perspective of the computer system? At
the beginning of the interaction, the target pattern might
be fed into a planner that determines an optimal solution
of moves to make on the part of both parties in order to
build the target pattern (i.e., a ground truth solution), and
at the completion of the interaction, the actually executed

interaction is compared to the optimal solution. This can
be assessed using simple metrics, like edit distance.

6.4. Scenario Variants and User Modeling
Blocks world tasks can serve as a proxy for situations re-
quiring a collaborative interaction in a controlled environ-
ment, but do risk missing information about what a user
knows about other types of complex objects versus what a
computer knows. Introducing non-block objects adds other
parameters that can be conditioned against, such as how
the interlocutors interpret each others’ behavior with con-
vex objects vs. non-convex objects, or round objects vs. flat
ones. Would a human, for example, more readily ask an
agent to roll a ball than roll a block, due to knowledge that
balls afford being rolled (Gibson, 1977; Gibson, 1979)?
This information can then be incorporated into the agent’s
model of what its interlocutor knows about the vocabulary
of available concepts. As the virtual agent becomes more
and more certain that the human knows certain concepts or
prefers certain moves, it may more readily execute them, or
could even plan for expected user behavior.

7. Conclusion
We have proposed an evaluation scheme to assess the cov-
erage of multimodal interaction systems and provided an
outline of its use evaluating a sample interaction in a system
that uses linguistic, gestural, and visual modalities. The ex-
ample system exploits many advantages of virtual embod-
iment (Kiela et al., 2016), but consistent evaluation is re-
quired to test areas where the system needs improvement,
and the framework outlined above can provide this infor-
mation without very complicated algorithms to process the
logged data. It uses simple metrics and processing based on
object and event semantics. These properties are agnostic to
the precise modalities used in a given interaction, and so the
evaluation scheme accommodates measurement of various
phenomena through the course of a human-computer inter-
action in a multimodal system. We have presented prelim-
inary results from naive users run through the sample sys-
tem, which show how we can use simple metrics to assess
the ease or difficulty with which specific features communi-
cate information. We believe this type of evaluation will be
useful for developing user models and helping researchers
assess the gaps in novel computational interaction systems
in a variety of modalities, scenarios, and interaction types.
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