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Gibson: Affordances
• Affordance (n.) - the functional and ecological relationship between organisms and their environments (Gibson, 1977) 

• To say an object “affords” and action is to say an object facilitates the action being taken with it 

• Predicting affordances has proven to be a topic of interest to AI, esp. robotics 

• HOI datasets for image and video recognition provide a similar task to evaluate against (Chao et al., 2015; Goyal et al., 
2017; Chao et al., 2018) 

• Methods to learn affordances from visual features exist (Fang et al., 2018; Nagarajan et al., 2019; Xiao et al., 2019) 

• Affordance prediction is still challenging 

• Humans learn about affordances by using objects or watching them being used, rather then from text (e.g., “cups 
contain things,” “spoons are used for stirring) 

• Such information is considered obvious and may be sparse in corpora



Gibsonian vs. Telic Affordances
• Gibsonian affordances: behaviors afforded due to object structure 

• Grasp-able, hold-able, pick up-able, throw-able, etc. 

• Pustejovsky (2013) introduced the notion of the telic affordance, or behavior conventionalized due to object’s typical use or 
purpose 

• Downstream of the GL telic role 

• Gibsonianly, a chair might be grasp-able, slide-able, etc. 
It was made to be sit in-able
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Gibsonian vs. Telic Affordances
• If Gibsonian and telic affordances are different, are there nonetheless direct correspondences between them that can be 

automatically exposed? 

• We explore the ability of machine learning methods to learn correspondences between objects based on their geometries, 
and based on human annotations of object use 

• Focus on one behavior only: grasping 
• We then train classifiers on two datasets representing the different affordance types and use an affine transformation 

technique explore correspondences between the embedding spaces of the two classifiers 



MeshCNN
• Key to this work is MeshCNN (Hanocka et al., 2019) 

• Adaptation of convolutional neural networks for the analysis of 3D triangular meshes 

• Though polygonal meshes explicitly and efficiently capture both surface and topology, few attempts have been made 
to use such data for ML inference 

• High-quality 3D polygonal mesh data is difficult to acquire at scale 

• Advances in capturing, synthesizing, or reconstructing 3D mesh or point cloud data (e.g., Yu et al., 2020; Jain et al., 
2021; Lin et al., 2021; Ye et al., 2021; Michel et al., 2021; Hanocka et al., 2020a; Metzer et al., 2021) suggest that 
such data is useful for AI tasks



MeshCNN
• Convolution operators apply to unambiguously-ordered features in a neighborhood 

• Because images are pixel grids, this creates an inherent neighborhood and ordering 

• Not the case in 3D triangular meshes 

• MeshCNN authors define a neighborhood for each edge that consists of: 

• Edges contained in faces incident on that edge 

• Vertices ordered counter clockwise 

• Input features of the edge: dihedral angle, two inner angles, two 
edge-length ratios between edge and  perpendiculars for each face 
from the edge 

• Enabled custom pooling operation that collapses incident edges to a point 

• MeshCNN has demonstrated performance on mesh segmentation and classification, using fewer parameters and compute 
time than comparable methods 



Affordance Classification Task
• Task: If MeshCNN can classify meshes by type, can it classify groups of meshes by type (e.g., grasp method)? 

• Select test set of common household object graspable with one hand: 

• bottle, mug, knife, bowl, plate, wine glass, pen, apple, jar, spoon, fork, glass, teapot, banana, pan 

• Common kitchen objects represent a common problem set in this domain (e.g., Damen et al., 2018) 

• Similarities in the mesh should indicate similarities in the grasp method 

• e.g., cylindrical objects grasped similarly, objects with handles grasped similarly



Human Annotation
• Created a survey to elicit canonical grasp pose for each object 

• Multiple-choice questionnaire: “Consider how your hand is posed while grasping each object for typical use. Then, for each 
object, select all other objects which are grasped using a similar hand pose.” 

• Participants could select up to 15 objects, to group multiple objects in grasp classes 

• 28 participants (∴ 28 15D k-hot vectors) 

• Responses filtered using standard statistical techniques like Z-score 
filtering and normalization 

• Computed Kraemer’s kappa (Kraemer, 1980) to account for multiple annotators and variable number 
of choices 

• κ ≈ .32, indicating “fair agreement” (Landis and Koch, 1977)



Mesh Dataset
• For each object, collected 40 3D meshes from public repositories 

• Converted all to .obj format, standardized to ~8,000 faces, ~15,000 edges each 

• Filter meshes to remove anomalies, e.g., non-manifold or non-Euclidean meshes 

• Visual inspected each mesh for identity 

• Validated each mesh with MeshCNN itself on dummy classification task



Deriving Grasp Classes
• Sum 28 15D vectors for each object, derived from the human annotation, into cooccurrence matrix 

• For each object (i.e., row), compute PPMI with each other object (i.e., column), given by 

 

• Normalize cooccurrence matrix by PPMI values, then use Euclidean distance between object vectors as a similarity metric 
to derive grasp classes

PPMI(a, b) = max(ln( P(a, b)
P(a)P(b) ),0)

Grasp Class Objects
spherical apple, banana

cylindrical bottle, wine glass, glass, jar

hook mug, teapot

palmar pinch bowl, plate

tripod spoon, fork, knife, pen, pan



Deriving Grasp Classes



Classifying Human Annotations
• Trained MLP classifier to predict grasp class from “human data” PPMI vectors 

• 46 samples per class (train), 10 samples per class (test) 

• Overall 72% test accuracy, 70.6 test F1



Classifying Meshes
• Trained MeshCNN instance to predict grasp class mesh data 

• 70 samples per class (train), 10 samples per class (test) 

• Overall 54% test accuracy, 46.9 test F1



Correpondences Between Classifier Embedding Spaces

• Poor MeshCNN test performance is curious! 

• MeshCNN has advertised effectiveness on related tasks, such as classifying if an object has a handle (Hanocka et al., 
2019) 

• What makes the grasp classification task difficult?
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Correpondences Between Classifier Embedding Spaces

• Previous research from the computer vision community (e.g., McNeely-White et al., 2020) has demonstrated that: 

• In closed-set tasks with fixed label sets, interchangeability between network embedding spaces is expected 

• Up to a matrix  that transforms inputs in  to outputs in  if the inputs and outputs 
correspond to the same label 

• Asking, given two sets of objects (vectors) A and B, are they the “same” under an affine transformation? 

• If our grasp classes can be represented as equivalent subspaces in both the MeshCNN and MLP classifiers… 

• Hypothesis: if MeshCNN embeddings can be transformed to MLP embedding space with sufficiently high R2, poor 
performance likely due to overfitting (as the trained model spaces are roughly equivalent) 

• If not, the underlying representations are fundamentally different

MA→B ∈ ℝdA × ℝdB ℝdA ℝdB



Correpondences Between Classifier Embedding Spaces

• Process: 
• Retrieve 200D embeddings for all inputs (train and test) from each classifier 

• MeshCNN embeddings as inputs, MLP embeddings as outputs 

• Pair embeddings according to grasp class: map MeshCNN embeddings into MLP embedding space 

• Use MLP regressor to minimize distance between paired embeddings 

• Resulting matrix attempts to align the two embedding spaces as closely as possible according to information in embedding 
pairings 

• We are transforming the MeshCNN embeddings into MLP embedding space to make them directly comparable



Correpondences Between Classifier Embedding Spaces

• Results: 
• Train embeddings R2: 0.06 

• Test embeddings R2: 0.02 

• After mapping, classifier embedding spaces remain largely  
non-overlapping 

• Two classifiers learned fundamentally different representations 

• Poor MeshCNN performance likely not due to overfitting on  
training data 

• Mesh information doesn’t include effective indicators of grasp- 
relevant groupings (except in certain cases—more later!)



Gibsonian vs. Telic Information
• Two almost completely separate regions 

• If MeshCNN had overfitted to training data, MeshCNN training 
embeddings (pink) should map much more closely to equivalent 
MLP embeddings (blue) 

• Instead, convex hull of MLP embeddings encloses mapped MeshCNN 
embeddings 

• Most embeddings from one space neatly separated from embeddings 
from the other space 

• Why?



Gibsonian vs. Telic Information
• Recall the prompt for human annotators: 

• “Consider how your hand is posed while grasping each object 
for typical use. Then, for each object, select all other objects 
which are grasped using a similar hand pose.” 

• This phrasing, esp. “for typical use” selects for telic 
affordances 

• 3D meshes alone do not capture this information



Gibsonian vs. Telic Information
• There may be cases where geometry correspondences to use 
• e.g., handles 

• MeshCNN performed well on the “hook” and “spherical” grasp 
classes 

• Results suggest that MeshCNN geometry-level representations 
correlated with Gibsonian affordances, but class labels came from 
telic affordances 

• Information not present in the mesh itself to learn 
Gibsonian-telic correspondences 

• MLP trained over human annotation of telic affordances learned 
different information 

• Gibsonian and telic affordances represent related but fundamentally 
different ways of interpreting the same objects



Specific Nearest Neighbors
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Specific Nearest Neighbors
• Examining representative “bowl” embedding in each embedding 

space 

• MLP nearest neighbors: mostly other bowls, or plates (other 
“palmar pinch” grasp) 

• Some others, due to disagreement in human annotation 
data 

• MeshCNN nearest neighbors: diverse—bowls, plates, bottles, jars, 
teapots 

• Possible topological correspondence? 

• (This would exclude teapot handle)



Specific Nearest Neighbors
• When grasped for typical use or purpose, hand pose is different 

• (e.g., drinking from a bottle vs. eating from or filling 
a bowl)



Specific Nearest Neighbors
• Examining representative “mug” embedding in each embedding 

space 

• Mug belongs to “hook” grasp class (handles) 

• Both MeshCNN and MLP performed well on this class 

• Most nearest neighbors, among both embedding types, are 
mugs and teapots (“hook” class members) 

• Nearest neighbors of MeshCNN mug embedding include MLP 
embeddings of teapot 

• Indicates that for this grasp class, the two models did 
converge somewhat



Conclusion
• One of the first works to use ML to explore the Gibsonian/telic distinction 
• Grasping is typically a Gibsonian affordance 

• Based on object structure, as would be encoded in a geometric mesh representation 

• Grasping for a particular use or purpose implies a telic affordance 

• Encoding information this way, as human annotations did, results in different representation from the geometric 
representation learned by MeshCNN 

• Even with the same output labels, models trained on this differing data do not appear to be learning equivalent 
representations that can be correlated to relationships between Gibsonian and telic affordances



Conclusion
• An embodied task like affordance classification is still difficult for even specialized models like MeshCNN that operate 

directly over 3D data 

• Problem becomes more difficult if affordances are characterized by a telic/Gibsonian distinction 

• Even a single afforded behavior such as grasping, when annotated in telic terms, carries different information from 
the same affordance viewed Gibsonianly 

• Broader implication: Gibsonian and telic affordances may carry fundamentally different information about an object 

• Shape underspecifies use



Implications for Action Recognition
• An affordance is not just any action taken with an object 

• Not every HOI exploits the object’s affordances 

• An affordance is a distinct action possibility that an object allows an agent to take 

• More particular to that object than would arise by chance 

• Simple object detection is not enough 

• False positives in HOI tasks often result from detecting the presence of an object when it is not being held for typical 
use or purpose

2 “ride” images from HICO-Det dataset



Implications for Action Recognition

False positives from Gkioxari et al. (2018)



Future Work
• The hand is missing! 

• Imagine about a cup on the table 

• Can potentially afford anything (drinking, pushing, etc.) 

• The final action cannot be predicted, unless coupled with a grasp pose 

• <object>+grasp can predict hand pose 

• Without hand pose, <object> cannot predict action! 

• Explore methods for getting 3D hand pose information from a mesh (Grady et al., 2021; Hampali et al., 2021)

Image from Grady et al. (2021)
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